skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rajaraman, Sitaram"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cases of convergent adaptation, especially between close relatives within a lineage, provide insights into constraints underlying the mechanisms of evolution. We examined this in the carnivorous plant family Lentibulariaceae, with its highly divergent trap designs but shared need for prey digestion, by generating a chromosome-level genome assembly for Pinguicula gigantea, the giant butterwort. Our work confirms a history of whole-genome duplication in the genus and provides strong phylogenomic evidence for a sister-group relationship between Lentibulariaceae and Acanthaceae. The genome also reveals that a key digestive adaptation, the expansion of cysteine protease genes active in digestion, was achieved through independent tandem duplications in the butterwort (Pinguicula) and its close relative, the bladderwort (Utricularia). Most of these parallel expansions arose in non-homologous regions of the two genomes, with a smaller subset located on homologous blocks. This study provides clear genomic evidence for convergent evolution and illustrates how similar selective pressures can repeatedly shape genomes in analogous ways. 
    more » « less
    Free, publicly-accessible full text available September 9, 2026
  2. Abstract Island systems provide important contexts for studying processes underlying lineage migration, species diversification, and organismal extinction. The Hawaiian endemic mints (Lamiaceae family) are the second largest plant radiation on the isolated Hawaiian Islands. We generated a chromosome-scale reference genome for one Hawaiian species,Stenogyne calaminthoides, and resequenced 45 relatives, representing 34 species, to uncover the continental origins of this group and their subsequent diversification. We further resequenced 109 individuals of twoStenogynespecies, and their purported hybrids, found high on the Mauna Kea volcano on the island of Hawai’i. The three distinct Hawaiian genera,Haplostachys,Phyllostegia, andStenogyne, are nested inside a fourth genus,Stachys. We uncovered four independent polyploidy events withinStachys, including one allopolyploidy event underlying the Hawaiian mints and their direct western North American ancestors. While the Hawaiian taxa may have principally diversified by parapatry and drift in small and fragmented populations, localized admixture may have played an important role early in lineage diversification. Our genomic analyses provide a view into how organisms may have radiated on isolated island chains, settings that provided one of the principal natural laboratories for Darwin’s thinking about the evolutionary process. 
    more » « less
  3. Abstract Coffea arabica, an allotetraploid hybrid ofCoffea eugenioidesandCoffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploidC. arabicaaccession and modern representatives of its diploid progenitors,C. eugenioidesandC. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000–610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed withC. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding ofC. arabica. 
    more » « less
  4. Abstract Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation,Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple,Syzygium grande. We show that whileSyzygiumshares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms thatSyzygiumoriginated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important inSyzygiumdiversification. 
    more » « less